And They Might Shatter Modern Physics
by Rafi Letzter (LiveScience)
There’s something mysterious coming up from the frozen ground in Antarctica
And it could break physics as we know it.
Physicists don’t know what it is exactly. But they do know it’s some sort of cosmic ray — a high-energy particle that’s blasted its way through space, into the Earth, and back out again. But the particles physicists know about — the collection of particles that make up what scientists call the Standard Model (SM) of particle physics — shouldn’t be able to do that. Sure, there are low-energy neutrinos that can pierce through miles upon miles of rock unaffected. But high-energy neutrinos, as well as other high-energy particles, have “large cross-sections.” That means that they’ll almost always crash into something soon after zipping into the Earth and never make it out the other side.
And yet, since March 2016, researchers have been puzzling over two events in Antarctica where cosmic rays did burst out from the Earth, and were detected by NASA’s Antarctic Impulsive Transient Antenna (ANITA) — a balloon-borne antenna drifting over the southern continent.
Since then, physicists have proposed all sorts of explanations for these “upward going” cosmic rays, from sterile neutrinos (neutrinos that rarely ever bang into matter) to “atypical dark matter distributions inside the Earth,” referencing the mysterious form of matter that doesn’t interact with light. All the explanations were intriguing, and suggested that ANITA might have detected a particle not accounted for in the Standard Model. But none of the explanations demonstrated conclusively that something more ordinary couldn’t have caused the signal at ANITA.
A new paper uploaded today (Sept. 26, 2018) to the preprint server arXiv changes that. In it, a team of astrophysicists from Penn State University showed that there have been more upward-going high-energy particles than those detected during the two ANITA events. Three times, they wrote, IceCube (another, larger neutrino observatory in Antarctica) detected similar particles, though no one had yet connected those events to the mystery at ANITA. And, combining the IceCube and ANITA data sets, the Penn State researchers calculated that, whatever particle is bursting up from the Earth, it has much less than a 1-in-3.5 million chance of being part of the Standard Model. (In technical, statistical terms, their results had confidences of 5.8 and 7.0 sigma, depending on which of their calculations you’re looking at.)
Breaking Physics
Derek Fox, the lead author on the new paper, said that he first came across the ANITA events in May 2018, in one of the earlier papers attempting to explain them.
“I was like, ‘Well this model doesn’t make much sense,'” Fox told Live Science, “but the [ANITA] result is very intriguing, so I started checking up on it. I started talking to my office neighbor Steinn Sigurdsson [the second author on the paper, who is also at Penn State] about whether maybe we could gin up some more plausible explanations than the papers that have been published to date.”
Fox, Sigurdsson and their colleagues started looking for similar events in data collected by other detectors. When they came across possible upward-going events in IceCube data, he said, he realized that he might have come across something really game-changing for physics.
“That’s what really got me going, and looking at the ANITA events with the utmost seriousness,” he said, later adding, “This is what physicists live for. Breaking models, setting new constraints [on reality], learning things about the universe we didn’t know.”
As Live Science has previously reported, experimental, high-energy particle physics has been at a standstill for the last several years. When the 17-mile (27 kilometers), $10 billion Large Hadron Collider (LHC) was completed on the border between France and Switzerland in 2009, scientists thought it would unlock the mysteries of supersymmetry — the mysterious, theoretical class of particles that scientists suspect might exist outside of current physics, but had never detected. According to supersymmetry, every existing particle in the Standard Model has a supersymmetric partner. Researchers suspect these partners exist because the masses of known particles are out of wack — not symmetric with one another.
“Even though the Standard Model works very well in explaining a plethora of phenomena, it still has many handicaps,” said Seyda Ipek, a particle physicist at UC Irvine, who was not involved in the current research. “For example, it cannot account for the existence of dark matter, [explain mathematical weirdness in] neutrino masses, or the matter-antimatter asymmetry of the universe.”
Instead, the LHC confirmed the Higgs boson, the final undetected part of the Standard Model, in 2012. And then it stopped detecting anything else that important or interesting. Researchers began to question whether any existing physics experiment could ever detect a supersymmetric particle.
“We need new ideas,” Jessie Shelton, a theoretical physicist at the University of Illinois at Urbana-Champaign, told Live Science in May, around the same time that Fox first became interested in the ANITA data.
Now, several scientists not involved in the Penn State paper told Live Science that it offers solid (if incomplete) evidence that something new has really arrived.
“It was clear from the start that if the ANITA anomalous events are due to particles that had propagated through thousands of kilometers of Earth, then those particles were very likely not Standard Model particles,” said Mauricio Bustamante, an astrophysicist at the Niels Bohr Institute at the University of Copenhagen, who was not an author on the new paper.
“The paper that appeared today is the first systematic calculation of how unlikely is that these events were due to Standard Model neutrinos,” he added. “Their result strongly disfavors a Standard Model explanation.”
“I think it’s very compelling,” said Bill Louis, a neutrino physicist at Los Alamos National Laboratory who was not involved in the paper and has been following research into the ANITA events for several months.
Every physicist who spoke with Live Science agreed that researchers need to collect more data to verify that ANITA and IceCube have cracked supersymmetry. It’s possible, Fox said, that when IceCube researchers dig into their data archives they’ll find more, similar events that had previously gone unnoticed. Louis and Bustamante both said that NASA should run more ANITA flights to see if similar upward-going particles turn up.
Over the long-term, if these results are confirmed and the details of what particle is causing them are nailed down, several researchers said that the ANITA anomaly might unlock even more new physics at the LHC.
In other words, the ANITA anomalies could offer scientists the key information necessary to properly tune the LHC to unlock more of supersymmetry. Those experiments might even turn up an explanation for dark matter.
Right now, Fox said, he’s just hungry for more data. — End of Article
This article was originally published on September 27, 2018. Now scientists based on the review of this information are claiming the following conclusions:
“…all sorts of suggestions rooted in known physics have been put forward to account for the perplexing signal, and all have been ruled out. What’s left is shocking in its implications. Explaining this signal requires the existence of a topsy-turvy universe created in the same big bang as our own and existing in parallel with it. In this mirror world, positive is negative, left is right and time runs backwards. It is perhaps the most mind-melting idea ever to have emerged from the Antarctic ice – but it might just be true.” Article
A short review/implications:
So where did this energy come from?
Where does energy come from in the third dimension?
The following excerpt from The Voice of Eros, Chapter XXXVII provides an answer:
“… let us create some allegorical equations with which you are more familiar. If we take a large pail and a hose which is attached to a faucet and after
Now this energy must always travel and must go somewhere. If we can pause a moment right here and draw a similar equation in your earth plane again, I will point out if you will take a piece of paper and a pencil and draw an elongated S. At the top and bottom of the S, you will place a plus mark or a positive sign. Then yo
All energy in your third dimension of electrical nature or even of a sound nature travels in such a form or fashion. We can see that energy traveling from the plus sign must pass through the negative portion in order to again become positive and positive back into negative. This is what we mean by alternation or reciprocating energy and this carried into a higher relationship or a higher dimension means actually the expansion and contraction of the great voids of space which aren’t space at all but are actually filled with radiant energies so expressing themselves in a continual pulsating positive and negative fashion.
From the above chapter excerpt we can conclude that Energy is everywhere and that neutrinos are just one form of high-energy scientists have just now started to detect as coming from the interior of the earth which they conclude is due to a parallel universe originating from the big bang, but of course, we understand that something can’t originate from nothing and further that there is not just one universe and a counter universe but that there are an infinite number of universes and dimensions that the earth scientist has yet to discover nor secondarily that this universe flows backwards in time for as Einstein himself once said: “People like us who believe in physics know that the distinction between past, present and future is only a stubbornly persistent illusion.” Time, in other words, he said, is an illusion. How can scientists now say that time is moving backwards?